511 research outputs found

    Ultralocal Fields and their Relevance for Reparametrization Invariant Quantum Field Theory

    Get PDF
    Reparametrization invariant theories have a vanishing Hamiltonian and enforce their dynamics through a constraint. We specifically choose the Dirac procedure of quantization before the introduction of constraints. Consequently, for field theories, and prior to the introduction of any constraints, it is argued that the original field operator representation should be ultralocal in order to remain totally unbiased toward those field correlations that will be imposed by the constraints. It is shown that relativistic free and interacting theories can be completely recovered starting from ultralocal representations followed by a careful enforcement of the appropriate constraints. In so doing all unnecessary features of the original ultralocal representation disappear. The present discussion is germane to a recent theory of affine quantum gravity in which ultralocal field representations have been invoked before the imposition of constraints.Comment: 17 pages, LaTeX, no figure

    Weak UCP and perturbed monopole equations

    Get PDF
    We give a simple proof of weak Unique Continuation Property for perturbed Dirac operators, using the Carleman inequality. We apply the result to a class of perturbations of the Seiberg-Witten monopole equations that arise in Floer theory.Comment: 22 pages LaTeX, one .eps figur

    Orthosymplectically invariant functions in superspace

    Get PDF
    The notion of spherically symmetric superfunctions as functions invariant under the orthosymplectic group is introduced. This leads to dimensional reduction theorems for differentiation and integration in superspace. These spherically symmetric functions can be used to solve orthosymplectically invariant Schroedinger equations in superspace, such as the (an)harmonic oscillator or the Kepler problem. Finally the obtained machinery is used to prove the Funk-Hecke theorem and Bochner's relations in superspace.Comment: J. Math. Phy

    Learning Incoherent Subspaces: Classification via Incoherent Dictionary Learning

    Get PDF
    In this article we present the supervised iterative projections and rotations (s-ipr) algorithm, a method for learning discriminative incoherent subspaces from data. We derive s-ipr as a supervised extension of our previously proposed iterative projections and rotations (ipr) algorithm for incoherent dictionary learning, and we employ it to learn incoherent sub-spaces that model signals belonging to different classes. We test our method as a feature transform for supervised classification, first by visualising transformed features from a synthetic dataset and from the ‘iris’ dataset, then by using the resulting features in a classification experiment

    Classification of Static Charged Black Holes in Higher Dimensions

    Get PDF
    The uniqueness theorem for static charged higher dimensional black hole containing an asymptotically flat spacelike hypersurface with compact interior and with both degenerate and non-degenerate components of event horizon is proposed. By studies of the near-horizon geometry of degenerate horizons one was able to eliminate the previous restriction concerning the inequality fulfilled by the charges of the adequate components of the aforementioned horizons.Comment: 9 pages, RevTex, to be published in Phys.Rev. D1

    The Affine Quantum Gravity Program

    Get PDF
    The central principle of affine quantum gravity is securing and maintaining the strict positivity of the matrix \{\hg_{ab}(x)\} composed of the spatial components of the local metric operator. On spectral grounds, canonical commutation relations are incompatible with this principle, and they must be replaced by noncanonical, affine commutation relations. Due to the partial second-class nature of the quantum gravitational constraints, it is advantageous to use the recently developed projection operator method, which treats all quantum constraints on an equal footing. Using this method, enforcement of regularized versions of the gravitational operator constraints is formulated quite naturally by means of a novel and relatively well-defined functional integral involving only the same set of variables that appears in the usual classical formulation. It is anticipated that skills and insight to study this formulation can be developed by studying special, reduced-variable models that still retain some basic characteristics of gravity, specifically a partial second-class constraint operator structure. Although perturbatively nonrenormalizable, gravity may possibly be understood nonperturbatively from a hard-core perspective that has proved valuable for specialized models. Finally, developing a procedure to pass to the genuine physical Hilbert space involves several interconnected steps that require careful coordination.Comment: 16 pages, LaTeX, no figure

    Surfaces Meeting Porous Sets in Positive Measure

    Full text link
    Let n>2 and X be a Banach space of dimension strictly greater than n. We show there exists a directionally porous set P in X for which the set of C^1 surfaces of dimension n meeting P in positive measure is not meager. If X is separable this leads to a decomposition of X into a countable union of directionally porous sets and a set which is null on residually many C^1 surfaces of dimension n. This is of interest in the study of certain classes of null sets used to investigate differentiability of Lipschitz functions on Banach spaces

    On bulk singularities in the random normal matrix model

    Get PDF
    We extend the method of rescaled Ward identities of Ameur-Kang-Makarov to study the distribution of eigenvalues close to a bulk singularity, i.e. a point in the interior of the droplet where the density of the classical equilibrium measure vanishes. We prove results to the effect that a certain "dominant part" of the Taylor expansion determines the microscopic properties near a bulk singularity. A description of the distribution is given in terms of a special entire function, which depends on the nature of the singularity (a Mittag-Leffler function in the case of a rotationally symmetric singularity).Comment: This version clarifies on the proof of Theorem
    • 

    corecore